diversity

Roundup from #LGBTSTEMday

July 5th, 2018 was the first annual #LGBTSTEMday, organized by Pride in STEM, Out in STEM, InterEngineering, and House of STEM. As a capper to pride month, queer scientists took to twitter and social media to share their stories, reflect on queer science, and post lots of rainbow-themed science pictures. Below is a round-up of a few posts that I found worth bookmarking, plus some tweet threads. 

American Geophysical Union, From the Prow: LGBT STEM Day: Time to talk about it

AGU is my “home” professional association, and has been pro-active (at least compared to some other organizations) about promoting diversity, creating policy to combat harassment, and speaking out about science policy. I was glad to see someone from the AGU Board of Directors writing directly about her experiences as a queer woman in the geosciences.

Nature comment: LGBTQ Scientists are still left out

“In science, where our personal lives already take a back seat, it can feel unprofessional or career-damaging to be open about something as personal as our LGBTQ identity, and no scientist should feel pressure to do so. But without visibility, other scientists will not benefit from a sense of belonging and inclusion.” Striking a balance between outspoken-ness and professionalism can be difficult – that’s true for any under-represented minority. But the often “invisible” nature of LGBTQ scientists has its own twist on that struggle.

Science Careers: Visibility matters: a conversation with the co-founder of 500 Queer Scientists

Dr. Lauren Esposito talks further about why visibility and community building matters so much to queer scientists. Even if someone is not in a position where they would feel comfortable being out, we can help them feel less isolated. Knowing you are part of a larger community, having people you can reach out to or role models you identify with – all these help scientists cope.

The Lab and Field

Dr. Alex Bond has been writing on his blog about being LGBTQ in STEM for years, and had quite a few great posts this past pride month. Some highlights include asking why professional organizations aren’t engaging in LGBTQ diversity and inclusion, a Queer in Science Ask Me Anything, and essential reading for straight allies. And dig into his archives on queer science!

One professor’s experience as queer in science (thread)

Being a good ally of queer scientists (thread)

Why does #LGBTSTEMday even exist?

And many, many rainbows of science!

Career paths and transparency in academia

Nature News released a story this week, “How to Build a Better PhD”.  Labor economists, as explained in the piece, have long advised academics that we are over-producing doctoral students.  Too many newly-minted PhDs for too few faculty positions.  Anyone in academia knows this, we often have long discussions of it, and yet the system doesn’t change – or, if it does, the change is incremental.

Most of the Nature News story focuses on the statistics and fates of PhD students, plus some suggestions on how to fix the systems.  I wasn’t surprised that only 26% of PhD students end up in full-time academic positions, but I never would have guessed 37% of PhD biology students leave their program before finishing.  But, the career paths of many students remain unknown – or at least untracked.  Stanford made an effort to track doctoral graduates and found only 31% of recent cohorts were employed as postdocs.  Statistics following students after graduation are rarely collected by universities, however.  Advice ranges from, “stop producing PhD students” to providing training in management and budgeting applicable to jobs both inside and outside academic science.  Those management skills are sorely lacking in academia, actually – we all know faculty who could improve their time management, and even as a sixth-year PhD student I have little experience in creating a budget for an NSF proposal.  Basic job skills are learned on the fly and some more formal instruction would probably give us all a leg up.

Overall, the article lays out the problems with our current systems nicely, and offers some possible solutions.  However, one sentiment (not long dwelled upon in the article) sparked a bit of a rant on Twitter, and I’d like to expand on that here.

“Meanwhile, some experts say that the onus falls partly on prospective and current PhD students to make sure their eyes are open. They should arm themselves with as much information as possible, says Labosky, so that ‘they are aware of their alternative options and can make plans’.”

While I do think students should attempt to make an informed decision about entering graduate programs, the onus is not on them.  If universities can’t even be bothered to formally track the fate of their graduates, how can we expect new students to know how competitive academia really is?

Starry-eyed early-twentysomethings are often exhorted to “do what you love and love what you do”.  That ideal leads many to graduate school.  Certainly, that’s how I landed where I am now.  And I do love what I do.  I love debating and discussing science, and learning new things.  I love how much I travel – for conferences and field work.  What other job sends you on a month-long, all expenses paid trip to northeastern Siberia?  I’ve met amazing people and made great friends.  I’ve discovered things that no one else knew before.  Just yesterday, I annoyed my officemates as I cooed over a new figure for my dissertation, elegantly summarizing months of work in one scatterplot.  I identify as a graduate student, a scientist, and an academic.  I’m open to alternative career paths, but I think I would make a good professor.

And, yet.  Miya Tokumitsu’s article last year, “In the Name of Love” rings true.  It is a privilege that I can afford graduate school.  I do value the intellectual products of my work more so than the money. Which can be a problem, to pull a few quotes from the article:

“[O]ur faith that our work offers non-material rewards, and is more integral to our identity than a ‘regular’ job would be, makes us ideal employees when the goal of management is to extract our labor’s maximum value at minimum cost.”   

and

"Is there any way we can get our employees to swoon over their desks, murmuring “I love what I do” in response to greater workloads and smaller paychecks? How can we get our workers to be like faculty and deny that they work at all? How can we adjust our corporate culture to resemble campus culture, so that our workforce will fall in love with their work too?"

This attitude has become pervasive across other industries as well (unpaid internships are rampant in the arts and entertainment, for instance, although science also claims infamy on that front).  Academia embodies this attitude across entire careers, not just at the beginning.  No one, even the most idealistic undergraduate, expects to be making bank as a professor.  But many do expect a secure, steady income doing what they love in a university setting.  And, these days, those jobs are pretty thin on the ground.

Academia can be a bit of a closed community, for all our talk of outreach and “broader impacts”.  We discuss academic politics and problems with each other ad nauseam, but often remain tight-lipped to outsiders.  Do new students know that faculty searches often weed through one hundred applications?  Or 450 applicants, as one position (again, from Twitter) apparently had?  Do departments routinely tell undergraduates attrition rates, or placement 3 years after graduation?  5 years?  10 years?  Probably not.  Probably, most departments only know career paths of some alumni, not all.  Our department is currently constructing a complete alumni list spanning 30 – 40 years.  That’s essential information to assess our success as a department, yet only in the past two or three years has that database been created.

So, what to do about it?  I think a key problem is transparency.  Departments need to track their students after graduation, and be upfront with those statistics.  Current faculty and students, particularly senior students, need to be honest with prospective students about career prospects after graduation.  Faculty who advise undergraduates should let them know the consequences of pursuing an academic career – both the good and the bad.  And, yes, prospective students should seek out that information.  But that knowledge and data has to first be freely available.

A few books

Well, there went my plan to update once a week or so.  I do have a couple of posts in the making – one on the Anthropocene and one on my own research on using satellite imagery to monitor Arctic rivers.  In the meantime, here are some books I’ve read in the past few weeks.  No particular order:

Uprooted by Naomi Novik

If you like fantasy, fairy tales, or novels with a deeply rooted sense of place – read this book.  Agnieszka, a coltish young woman, awaits the day that her best friend, Kasia, will be taken from their home as a tribute to The Dragon.  The Dragon is no mythical beast, but a century-old sorcerer, who plucks one 17-year old girl from the valley he oversees, once every ten years.  Kasia is beautiful, self-assured, and talented.  Yet, Agnieszka is the one who is taken.  In doing so, she is drawn into a world of magic, intrigue and an ongoing battle against the malevolent Wood. 

Uprooted came out on the day that I flew back from New England to Texas last month.  I was spending the night in the airport, and rather than trying to sleep, I devoured this book.  Novik drew inspiration from Polish folktales, and that translates into a wonderfully atmospheric setting for her story.  The Wood feels like an archetype of an evil forest.  Plus, I found Anzieszka to be a very relatable character whose choices and actions actually made sense.  Not always the case in genre fiction!  Her friendships with Kasia, the Dragon and other characters evolve and motivate her in believable ways.  Suffice to say, I loved this book.  Novik already earned a spot on my comfort-reading shelf with her series of dragons in the Napoleonic War, but this is even better .

Whistling Vivaldi by Claude Steele

A few weeks ago, as part of a workshop, the National Academies hosted a webinar and panel discussion featuring Claude Steele.  He spoke about stereotype threat and implicit biases, and how we might be able to combat those obstacles.  About halfway through his talk, I bought his book (oh, ebooks, how I love thee).

People experience stereotype threat when they fear being at risk of fulfilling a negative stereotype about a group they identify with.  High school girls (and younger) do poorly on math exams compared to boys, in part, because they have added anxiety from this stereotype threat.  That anxiety – the actual, physical and mental symptoms of it – prevent them from performing their best.  The same holds true for other groups – white men in athletics and black students taking academic exams are cited frequently in Whistling Vivaldi.  Steele steps through how this theory was developed, what the effects are and how it is possible to lessen  stereotype threat.  As someone who might be teaching students in the relatively near future, I found this book particularly interesting.  There are strategies here that could make any classroom more welcoming and effective – not just for a few privileged students already likely to succeed, but for all. Underrepresented groups in STEM face other hurdles, of course.  But stereotype threat is an important topic for any educator to understand.

Missoula: Rape and Justice in a College Town by Jon Krakauer

I started this a few weeks ago, and set it aside.  This weekend, I read the remaining 90% in one go.  I won’t lie – it is an upsetting read.  I had to pause every few pages (to alternately yell at the book or drink a bit more beer as fortification).  However, Jon Krakauer writes a gripping story, sympathetic to the people involved and backed by extensive research into the psychology and statistics of rapists and their victims.  Missoula may have grabbed headlines as a place of inordinate sexual violence, the “rape capitol”, but really it represents a standard college town in America.  Brace yourself, and read Missoula.

Robin McKinley

I needed a palette cleanser after Missoula, so I’ve been reading some old favorites by Robin McKinley.  Most of her books are standalones, but set in a very loosely related world – many are retold fairy tales.  Rose Daughter retells Beauty and the Beast, my favorite fairy tale.  I told a friend this recently, and she looked at my bookshelves, at my stack of books on the coffee table, and my necklace (a book made out of handmade paper and reclaimed leather), and said something to the effect of, “Is it because you relate to Disney’s Belle?”  She’s probably right.  Anyway, Rose Daughter also features gardening, and the best use of unicorns in any fantasy novel, ever.  Other favorites by Robin McKinley include Sunshine (best vampire urban fantasy with a baker as a protagonist); Spindle’s End (with fairy godmothers far less foolish than the Disney version); The Hero and the Crown (should be given to every 11 year old on their birthday). 

I’ve read other books the past few weeks, but these are the highlights (with one exception, that will be a longer post if I can get around to it).  

Women preferentially hired in STEM - but does that solve the problem?

Edited to add: Aradhna Tripati pointed out that the paper does not state that women are preferentially hired - that's an over-reach.  I'm going to let the original title stand, but a better title would be "Survey suggests progress on gender-biased hiring in STEM - but hiring is hardly the only obstacle."  Or something along those lines.

A new study came out about women in academic STEM.  The authors write that women are favored 2:1 across disciplines when hiring STEM tenure track positions.  Briefly, the authors sent out surveys asking for faculty from four disciplines (biology, economics, engineering, and psychology) to assess three job candidates – an inferior foil candidate (male) and two equally qualified superstars (one male, one female).  In some cases, they included information about children and marital status.  They also varied whether the candidates were described using masculine or feminine adjectives (assertive vs easy to work with, for instance).  Over 800 faculty replied, pretty much equally split between men and women. 

Now, this is a subject that is near and dear to my heart.  I am lucky, I’ve only very rarely been subjected to overt sexism myself, and it was always pretty mild (and usually in Russia).  But I have witnessed it more often, heard stories from many sources, and been called a rabble-rouser for bringing the issues up.   I’m kind of proud of that last bit.  Blame my parents, ex-60s era radicals that they are.  So, I keep an eye out for papers like this.

I should state up front that I was very skeptical of this paper from the get-go.  Yes, the premise seems off from my own experiences, and those of colleagues.  But even more than that, the authors of this paper published another article last year, with an accompanying op-ed stating “Academic Science Isn’t Sexist.”  The article and op-ed were, at best, flawed, featuring this gem:

As children, girls tend to show more interest in living things (such as people and animals), while boys tend to prefer playing with machines and building things

I won’t go into details – this post is about their new article – but Rebecca Shulman, Rachel Bernstein, Emily Willingham, Jonathan Eisen, and Kelly J. Baker all have excellent takedowns of the methods and approach.  Suffice to say, I was primed to disagree.

And, boy-howdy, do I ever.

The first sentence, “Women considering careers in academic science confront stark portrayals of the treacherous journey to becoming professors.”  And you know what?  Men do too.  This is not a good time to consider becoming a professor.  NSF has a 4-8% funding rate, depending on program (anecdotal, from what people have told me).  NIH is worse.  Tenure depends on getting big, nationally-competitive grants, and usually you need multiple.  Hours may be flexible, but they are long.  Pay is crappy until you get a tenure-track position, but even then it is not great.  You will move, and move often, before you land a tenure-track job.  Every tenure-track job has dozens, if not hundreds, of applicants.  Academic science right now is tough.

Data is not the plural of anecdote, but I will say I was not warned about the “treacherous  journey” while being explicitly female.  Yes, I knew funding was terrible.  People were encouraging.  They wanted more women to participate.  My cohort only had one guy in it, out of nine.  I’m more aware of the structural obstacles that women and POC and other under-represented minorities face now, five years in.  I think that’s true for most of my friends, too.  But, if you are interested in STEM, I do not think many people will tell you not to do it because of sexism.  Most conversations are positive – “How can we fix this?” – rather than negative – “God, this sucks.”

Williams and Ceci repeatedly state that the message “hiring is sexist” discourages women from applying for tenure track positions.  Their previous work had a similar point, about citation, publishing, promotion and retention.  Perhaps that single message is driving women away from STEM.  But there are far more factors driving the divergence between rates of graduating women doctorates in STEM, and the hiring of women assistant professors.  I’d like to think we, by and large, won’t be deterred because we hear hiring practices are sexist.  Personally, I’m more deterred by the low funding rates and moving every two years until I get that magical tenure-track position. 

I don’t particularly like this message-driven justification for these experiments, but you know what?  The experiments themselves are important. 

First, though, a little umbrage about how they designate the disciplines.  Biology and psychology are called “non-math-intensive.”  I cannot say anything about psychology, but biology?  There’s a lot of math.  Biostatistics and bioinformatics are growing disciplines because biologists are now dealing with huge datasets and complicated modelling to describe everything from fish populations to environmental metagenomics.  Ecologists are way better at math than I am. 

What’s more, the presence of math is probably not a good predictor for whether a field tends to more preferentially exclude women.  Otherwise, as Meg Urry states in this great lecture, there would not be a disparity in representation between astronomy and physics.  They do the same work, need the same skillset.  Yet astronomy has better representation of women.  Separating biology and psychology from engineering and economics makes sense – women representation differs strongly between the two groups.  But setting them up in contrast based on how “math-intensive” the disciplines are is silly, and leads the reader to equate the non-math-intensive disciplines as feminine and math a deterrent to women.  This is mostly semantics, but I think if you’re publishing a paper on gender biases you need to be careful about such details.

The authors also include in their design the marital status of the applicants, whether the spouses had a job, and whether the applicants had children.  Certainly, these are the types of things that can influence hiring decisions.  But they aren’t supposed to be.  A job applicant is protected from answering these questions.  Faculty, hiring committees, even graduate students are not allowed, at all, to ask about marital status or children. That doesn’t mean the hiring committee doesn’t know, or that someone won’t break the rules.   It is still against most university guidelines for faculty to ask.  And such information would not be provided in a job application.  Even if that information was volunteered in conversation, I absolutely do not think it would be included in any official documents presented to faculty for assessment. Seriously.  I cannot emphasize enough how shady that seems to me. 

The faculty surveyed knew that these were not actual job candidates.  They knew it was part of a study.  From the supplemental material, an excerpt from what was sent to faculty in the survey,

“Imagine you are on your department’s personnel/search committee. Your department plans to hire one person at the entry assistant-professor level. Your committee has struggled to narrow the applicant pool to three short-listed candidates (below), each of whom works in a hot area with an eminent advisor. The search committee evaluated each candidate’s research record, and the entire faculty rated each candidate’s job talk and interview on a 1-to-10 scale; average ratings are reported below. Now you must rank the candidates in order of hiring preference. Please read the search committee chair’s notes below and rate each candidate. The notes include comments made by some candidates regarding partner-hire and family issues, including the need for guaranteed slots at university daycare. If the candidate did not mention family issues, the chair did not discuss them.”

Reaching way back to my undergraduate years, when I took “Qualitative Methods in Geography”, we learned about surveys.  Bias blindspot.  People think that they are less biased than they actually are, less swayed by those biases than the average American.  They are more objective than their colleagues.  Everyone wants to think well of themselves, so they think they aren’t racist, sexism, bigoted.  Everyone wants to think themselves resistant to the implicit biases that have been instilled by the cultural landscape.

Imagine a colleague receives a survey about hiring practices in academia.  The exact questions motivating this survey aren’t known, but you know that surveyors are assessing something about hiring decisions.  Your colleague, she’s pretty fair.  But you know she’s said something about single parents not having time to really devote themselves to their job at an R1 university.  How could they?  There aren’t enough hours in the day!  She has a bias.  Do you think, though, that she’s going to admit to that in a survey?  Do you think she is going to do anything but try to be as absolutely, unimpeachably “fair” as she can be?

Do you think she would come to the same conclusion if this were a hiring decision in your department?  Maybe. Maybe not.  I’m skeptical. 

Note: I’ve used “she” here because half of the respondents were women and I try not to default to “he”, but I’m not trying to imply that this effect is any more or less pronounced in men or women.  Implicit bias influences women and men roughly equally.

I suspect that the preference for women is at least partially owing to over compensation in order to appear unbiased.  I also think including anything about “lifestyle” – marital status, children, etc – probably leads people towards the idea that the study is about gender, or something related.  I also just saw someone on Twitter say that the email with the survey explicitly stated the study was about biases in hiring.  I’d also point out that the lifestyle description was, as far as I can tell, the biggest concrete detail provided in the summaries passed out to faculty.  Otherwise, they are described in adjectives such as “likeable”, “powerhouse” and “imaginative”.  I do not think that this effect alone could account for the staggering difference between male and female applicants in the results.  But I do think it is important to consider. 

All that said, the results are encouraging.  Women do not appear to be discriminated against, with the possible exception of economics.  The details are interesting – female faculty prefer divorced-with-kids women to married-with-kids men, male faculty the opposite, as an example.  Overall, this is great!  I’m really happy to see this.  My knowledge of social science best-practices is limited, but the statistical analyses seem fairly robust.  Systematic hiring biases are not as important as we thought! 

And then.  Then.  The opening sentence of the discussion.

“Our experimental findings do not support omnipresent societal messages regarding the current inhospitability of the STEM professoriate for women at the point of applying for assistant professorships.”

No one, to my knowledge, has recently claimed that hiring bias is The One Big Obstacle for women.  Calling this “omnipresent” is just weird.  There is no single barrier like that.  In fact, a much larger topic is not hiring women, but simply to make sure they are included in your hiring pool.  Encouraging women to send in applications in the first place. That’s certainly been the discussion in our department, and supported by several different initiatives.

This study used applicants with identical qualifications.  They did not use actual CVs, except for a small subset, but the CV summaries used made the male and female applicants appear to have the same expertise.  All the CV summaries were for extraordinary people.  And that is where things get hairy.

Women are cited less.  Women are nominated for (and win) fewer awardsRecommendation letters are weakerWomen apply to fewer positions than men, and men apply for a wider variety of positions that they do not necessarily qualify forAcademic women hold fewer patentsWomen are more likely to hold adjunct positionsFields that perceive themselves as requiring “genius” are far more male-dominated.  Women consistently report less mentoring.  Fewer women hold tenured positions at universities.  An even smaller number are in administrative positionsMuch of this has been the case for decades, despite an increasing percentage of female graduate students

Some of these are driven by women’s decisions, yes.  Those that do, I think, are tied to societal expectations that women are “nurturing” and “good teachers” rather than “brilliant” (see interactive based on RateMyProfessor).  There’s a reason that women are more successful than men once hired – probably because they had to be pretty extraordinary to overcome those obstacles and get hired in the first place.  The candidates in this study were all very strong – results might have been different if the candidates were a little less superstar, and a little more typical.

Many of these hindrances are not based on “supply-side” decisions, as the paper calls the problem.  Rather, they are a result of structural obstacles and biases within academia and society at large.  The authors belaboring that “messages to the contrary [that it is a precipitous time to be a woman in STEM] may discourage women from applying” is misleading.  I do not think that the scientific literature attributes the lack of women in STEM as driven by unfair hiring.  I think the scientific literature is pretty explicit that there are a lot of things going on preventing women (or any under-represented group) from succeeding on the tenure track, possibly including unfair hiring.  And, despite their previous claims (cited heavily in the new paper) that academic culture isn’t sexist, it’s pretty clear that gender biases and hostile workplaces are still a problem (evidence of which can be found in their own data).

Look, the experiments they did were valuable.  And the results were encouraging, wonderful to hear.  Everyone should know about them.  But the simplistic, overly broad take-away – that this whole thing would be fixed if women applied to more jobs – jumps way beyond the scope of those results.